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1. Introduction

We are interested in the approximation properties of closed shift-invariant subspaces of the

space L2(lRd) of all complex-valued square-integrable functions on jItd. We say that a space S of

functions defined on I[Ld is shift-invariant if, for each f E S, the space S also contains the shifts

f(. + a), a E Md. In other words, S contains all the integer translates of f if it contains f. A
particularly simple example of such a space is provided by the space

of all finite linear combinations of shifts of 4. We call its L2 (lRd)-closure the principal shift-
invariant space generated by 0 and denote it by

Of course, a general closed shift-invariant subspace of L2(]R d) need not be principal; it need not

even be generated by the shifts of finitely many functions.

Shift-invariant spaces are important in a number of areas of analysis. Many spaces, encountered
in approximation theory and in finite element analysis, are generated by the shifts of a finite number

of functions 4, on IRd. Shift-invariant spaces also play a key role in the construction of wavelets. In

each of these applications, one is interested in how well a general function f can be approximated

by the elements of the scaled spaces Sh, h > 0, of S defined by

sh := s(h): s E S}.

We postpone discussion of the literature concerning the approximation by the scaled spaces S h

until we have introduced some additional terminology and stated our main results.

Associated to any closed subspace S of L2 (a~d) and f E L2(IR d), we have the approximation

error:

(1.1) E(f,S) := min{jlf - sil : S E S}

where here and throughout this paper unsubscripted norms are the L2(IRd)-norm. We are interested

in describing the properties of S which govern the possible decay rates of E(f, Sh), as h -- 0, (for f

in L2 (Rd) or in one of the smooth subspaces of L2 (lRd)). For example, we shall characterize when

the scaled subspaces Sh, h > 0, are dense in the sense that limh-0 E(f,,Sh) = 0. More generally,

we shall characterize when the spaces ,h approximate suitably smooth functions to order O(hk)

as h -*0.

Our definitions of approximation orders are in terms of the potential space W2k(IRd), k > 0,
defined by

W2k(]Rd) := {f E L2(]Rd) :IfIwk(uR'd := (27r )-d/211( + I .)k f'11 < o}.

(Here and later, we use Ixl :2 +... + X2)1/2 to denote the Euclidean norm of a point x =

(x,... , Xd) in JR d.) When k is a positive integer, these are the usual Sobolev spaces. We say that

S provides approximation order k if, for every f E WV2(lRd),

(1.2) E(fSh) _< cshkll.lw (R,).
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We shall characterize the closed shift-invariant spaces S which have this property.

A variant of this problem is to characterize when, for a given k > 0, we have for each f E

W2(IRd) (in addition to (1.2)),

(1.3) E(f,Sh) = o(hk), h -, 0.

When k = 0, this is just the density problem. For this reason, we say that S provides density

order k whenever (1.3) holds.

Our characterizations of density, approximation order, and density order are in terms of Fourier

transforms. If f E L,(Rd), its Fourier transform f is defined by

AY):-J f(x)e-i'x" dx.

We assume that the reader is familiar with the usual properties of Fourier transforms. In particular,
the Fourier transform can be uniquely extended to L 2(Itd) and more generally to the space of

tempered distributions on ]R d .

Many authors have shown (under various restrictive conditions on 0) that the approximation

properties of a principal shift-invariant space S(-0) are related to the order of the zeros of the Fourier

transform of 0 at the integer multiples of 27r. It is therefore not surprising that our characterizations
of approximation order for general principal shift-invariant spaces involve the behavior near zero

of the 2ir-periodization of I 12, i.e., the L2 (lrDd)-function

(1.4) [, 1 I I(. + p)12.
PE2,rZ~l

This function enters our considerations as part of the function A0 E Loo(C), defined on the cube

C

by

(1.5) A (1 := (1- .1)1/2, on C.

Here (and below without further comment), we make use of the obvious identification between the

space L2(11d) of functions on the d-dimensional torus 1 1 d and the space L2(C) of functions on the
fundamental domain C. We shall prove

Theorem 1.6. The principal shift-invariant subspace S(0) of L 2(IRd) provides approximation

order k > 0 if and only if I .- kA0 is in Lo(C).

The analogue of this result for density orders is

Theorem 1.7. The principal shift-invariant subspace 3(0) of L 2(lRd) provides density order k > 0

if and only if I. 1-kA0 is in Lo(C) and

(1.8)lim h-d / lyl-2k[Ao(y)] 2 dy = 0.h-0O JhC

Of course, in the case k = 0, (1.8) characterizes when we have density.
It is rather remarkable that these conditions also characterize approximation and density orders

for arbitrary closed shift-invariant subspaces of L2(IRd). Namely, we shall prove:
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Theorem 1.9. A closed shift-invariant subspace S of L2(JRd) provides approximation order k > 0
if and only if it contains a function 4) for which I. I-kAO is in Loo(C). The space 8 provides density

order k > 0 if and only if it contains a function 4) for which I" _-kAO E Loo(C) and (1.8) holds.

We prove the last theorem by showing in §3 that the case of approximation by arbitrary closed

shift-invariant subspaces of L 2(lltd) can be reduced to the case of principal shift-invariant spaces.
In the case of principal shift-invariant spaces, our method of proof is based on two results

which we feel will have other important applications. The first is an explicit formula for the best

L2(lRd)-approximation from S(O)). The second is the following characterization

(1.10) S(O)) = (r E L2 (IRd): T is 2r-periodic}

of the space S(0)) in terms of its Fourier transform. Here and later, for a set F of functions, we

denote by F := {f: f E F} the set of its Fourier transforms.
It turns out that our analysis applies equally well to the more general situation where the

h-refinement of the space S is obtained by means other than scaling. Such cases are known and are
of interest in both spline theory (e.g., exponential box splines, cf. [DR]) and radial basis function
theory (cf. the detailed discussion in [BR2]). In the non-scaling case, we employ a family {Sh}h of
shift-invariant spaces, and consider the rates of decay of E(f, Sh) as a function of h. The notions
of "approximation order k" or "density order k" for the sequence {Sh}h are obtained by replacing

each E(f,,Sh) in the above definitions by E(f,Sh).
We close this section with a brief discussion of the connections between the results of this

paper and results in the literature. Schoenberg, in his seminal paper [S], was the first to recognize

the importance of the Fourier transform for describing approximation properties of principal shift-
invariant spaces. For the case d = 1, and with 0 a piecewise continuous function with exponential
decay at infinity, Schoenberg showed that all algebraic polynomials of degree < k can be written

in the form 'QE72Zd 0(' - a)c(a) in case

(1.11) 6(0) #0 and D'7$= 0 on 2irZd\0 for all 17 1 < k

holds (with d = 1).
Strang and Fix [SF] have treated the approximation properties of the space

of all linear combinations E"EV 0(" - aM)c(a) (finite or not) of the integer shifts of a compactly

supported function 4. There is no problem of convergence of such sums since, for any point x E R
at most finitely many terms of the sum are nonzero at x. Strang and Fix necessarily restricted

attention to the subspace
Sq2(0) := Sq,(O) n L2(OR d).

While this space is, in general, not closed in L2(IRd), one can show (see Theorem 2.16 below)
that its L2(1Rd)-closure is S(Ob). Strang and Fix proved that S2(0)) provides approximation order k
whenever (1.11) holds.
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To compare this result with Theorem 1.6 above, note that, for a compactly supported 4), [4, 4]
is a trigonometric polynomial, since then

(1.12) [ E,= a(ci)ea, with a(a):= J rO(-a)-(z)dz.
CfEZ d

Here and later, we use the abbreviation

e,(y) := e

If (1.11) holds, then 14, does not vanish at the origin and AO of (1.5) has a zero of multiplicity k
there. Thus, [ I'-"A is in L. (C) (as we know it must be). However, there are two important points
to bear in mind concerning our Theorem 1.6 and the Strang-Fix result. First of all, our theorem
does not require that 4 be compactly supported, nor even that it decay at infinity. Secondly, it
applies even when $ vanishes at the origin, a case of practical importance yet not accessible to
earlier approaches.

Actually, Strang and Fix proved more than we have just stated since they showed that the
approximation order O(hk) to a given f E Wk(JRd) by the elements of S2(4) )h can be achieved
with a control on the coefficients of the approximants sh E S 2 (0)h. Namely, if the approximants

are represented with respect to the L2-normalized functions O(a,h,z) := h-d/ 2O(x,/h - a) by

Sh = " a-EZ ch(a)O(a, h, .), then

(1.13) II(ch(a))Ie 2(2z) < Cf.

The introduction of such controlled approximation is important, since Strang and Fix show

that, conversely, if S2(0) provides controlled approximation order k then (1.11) holds. In other
words, for compactly supported 4, S2(0) provides controlled approximation order k if aiid only if

(1.11) holds. Since it can be easily seen that our condition in Theorem 1.6 is weaker than (1.11)
(even for compactly supported 4), it follows that there are cases when the achievable approximation

order cannot be obtained in a controlled manner. In this connection, it is worthwhile to point out

that positive controlled approximation order forces 0(0) $ 0.
There is a rich literature of clarifications and extensions of the Strang-Fix result, including

extensions to noncompactly supported 4 ([BI2], [J2], [DM2], [BJ], [B1], [R], [CL], [JL], [HL]

[BR2]). In addition, there are many papers studying the approximation order of specific principal
(and other) shift-invariant spaces, some of them ([Bul,2], [BD], [BuD], [BH1], [BR1], [DJLR],

[DM1], [DR], [Ja], [J], [L], [W], [M], [MN1,2], [Ra], [RS]) are included in the references; see

also the surveys [B2], [C], [P] and the references therein. By making assumptions on 4 weaker

than those used in any of the above references, we can translate our conditions on AO into simple

conditions on 0. For example, we show in §5 the following:

Theorem 1.14. Assume that 4 is bounded on some neighborhood of the origin. If (4)) provides

approximation order k, then 0 has a zero of order k at every 03 E 2wZd\o. In particular, D'70(i3) = 0
for all 171 < k in case 4 is k times differentiable (in the classical sense) at such 8.

Note that the boundedness of 0 required here holds, for example, if 0 is continuous at 0. In

particular, it holds for every 4 E L,(]IRd).
We also show in §5 the following converse:
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Theorem 1.15. Assume that 1/ is bounded on some neighborhood of the origin and that, for

some p > k + d/2, all derivatives of$ of order < p are in L2 (A), with A := B, + ( 2 '2Zd\o) for some

open ball B, centered at the origin. If D'(3) = 0 for all 171 < k and all /0 E 2r2d\0, then S(O)

provides approximation order k.

For most of the examples of a non-compactly supported 4 in the literature (e.g., radial basis

functions, see [P]), 4 is very smooth on lRd\0, but has a singularity at the origin. On the other
hand, the present standard approach to the derivation of approximation orders (viz., the polynomial

reproduction argument) requires 4 to decay at oo (at least) like 0(1 . 1-(k+d)), hence requires 4 to
be globally smooth. To circumvent this obstacle, one usually seeks a function b E So(4)) (or in

some superspace of So()) whose Fourier transform ; is smoother than 0, since this implies a more

favorable decay of 0 at oo. This 'localization' process constitutes the main effort in establishing
approximation orders for a non-compactly supported 4. Our theorem, though, does not require 4
to decay at oo at any particular rate, thus obviating the search for such 0. Results (weaker than

the above theorem) about Loo(IRd)-approximation orders, that apply to functions which decay

only mildly at oo, were derived in [BR2]. The approach there exploits the fact that the exponential

functions ea, 0 E ld, are in the space in which approximation takes place. In contrast, the approach
here makes use of the simple and explicit formula for the orthogonal projection onto (0)).

2. The orthogonal projector onto S(0)

In this section, we derive two important facts about the principal shift-invariant space S(0)
which will be the basis of much of the analysis that follows. The first is a simple formula (given in

Theorem 2.9) for the (Fourier transform of the) best L2-approximation from ,S(O). The second is

the description

(2.1) S(O)) = 1r4 E L2 IRd): r is 2 r-periodic}

of S5(O)) in terms of Fourier transforms mentioned in the introduction.

The yet to be proven (2.1) suggests that the calculation of integrals and inner products in-
volving functions from S(O)) should be taken over the torus 11 d . This can be accomplished by

periodization. If g E L1 (lRd), then

PSE21r2Z

with gO:= g(.+

OE2,r2Z
d

the (2r)-periodization of g. Here, the sum is to be taken in the sense of LI( d)-convergence,

which makes sense since, by assumption, g E L,(IR d). In particular, g0 E L,(Urd).

Similarly, we have

(2.3) J goffi = J[go, g9]
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for the inner product of two functions go,g 1 E L 2 (IRd), with

(2.4) [gO,g] :=(gOfi)*= - go('+/3)g1(.-+/3).
PE21r2Zd

Note that [go,g l is in L1 (IJd) since gogj E LI(1Rd). Also, by the Cauchy-Schwarz inequality,

(2.5) 1[go,]12 < [go'go][gz,'g],

and the right side of (2.5) is finite a.e. We will most often use (2.3) in the form

(2.6) ./Bd 0 = f

which is valid for arbitrary f, 0 E L 2(lRd) and arbitrary 2-periodic T for which rf E L2(]Rd). We
note that (2.6) implies the estimate

(2.7) 11T IIL2(FJ) _ IITIL2(,IJ)II[, 4]L.(,rd)

of use when [0, ] is bounded, e.g., when 0 is compactly supported.

After these brief remarks, let us consider the problem of finding a formula for the projection

of L2 (IRd) onto S(4)). Let P := PO denote the orthogonal projector onto S(O)). Then Pf is the

unique best L2(]Rd)-approximation to f from S(O), and is characterized by the fact that it lies

in S(O) while its difference from f is orthogonal to S(O). Since the Fouricr transform preserves
orthogonality, it follows (for example from the uniqueness of best approximation in L2 (]Rd)) that

the orthogonal projector P onto 8(O)) satisfies Pf = Pf.

We consider first what it means for a function f to be orthogonal to S(O). Since finite linear

combinations of the (integer) shifts 0(. + a) of 0) are dense in S(O), f E L 2(IRd) is orthogonal to

S(O) iff f is orthogonal to e-o for every a E 7Zd, i.e. (with (2.6)), iff

0- f ea -Jef,e, for all a E 7Zd.

This proves

Lemma 2.8. The orthogonal complement S(O) l of S(O) in L 2(]Rd) consists of exactly those

f E L 2 (lR d ) for which [f, 9 0 = 0.

From Lemma 2.8, we can easily determine Pf. Suppose, as is suggested by (2.1), that Pf =.,

with r some 2wr-periodic function. Then, from Lemma 2.8,

[f, ] = [PA, ] = [r$,~ =]- "[ ,

This motivates the following:
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Theorem 2.9. For each f E L 2(llt), Po'f = T14), with the 2fr-periodic function r defined by

(2.10) 'rJif IL P,'J on..=
to otherwise,

and flj defined up to a null-set by
n, = upp ,] := (w E Ua d , (o, 0}.

supp[$$ { mp .1$Iw 1

Proof. It is enough to show that Pi = T14 for each f E L2 (IRd). We first want to see
that rj4) is in L 2 (lRd). By (2.5), IrIf2E, ] If2 f[. With this, two applications of (2.6) give

(2.11) I'r,41 2 jIf2[$'] [fji,i =l J f 12.

Consequently, rT,4 E L2(IRd) and moreover the linear map

Q: L2 (Rd) - L2 (Rd) : f - Tj

is well-defined and norm-reducing on L2 (lRd). We next prove that Q = P.

If f E 3(4) - ((0)-F, then Lemma 2.8 gives that r = 0, hence Qf - 0. Thus Q = P on

S(O) On the other hand, on !Qj = supp[$,$],

, +o = L$,$]/L$,~ e, for all E ZZd.

Since 0 = 0 on the complement of f1 + 2frZd, this implies that Q maps the Fourier transform
of each integer shift of 0 to itself. Since Q is linear and bounded, and coincides with P on a
fundamental set for 3(4)), we have Q = P on S(0). By linearity, Q = P on all of L2(IRd). 4

Remark. With the convention (which we use throughout this paper) that 0 times any ex-
tended number is 0, we are entitled to write

(2.12) ry= [f, ]/[,4] and P = -

Note that (2.11) supplies the following lemma.

Lemma 2.13. If , f E L2(lRd), then rT E L2(lft), and IIrllI 11I i.

As a consequence, we obtain the characterization (2.1) of the space S(-0) in terms of its Fourier
transform.

Theorem 2.14. A function f is in S(46) if and only if I = ro for some 2ff-periodic r with
rT E L2 (IRd). In particular, r E S(O)) for every bounded r.

Proof. If f E S(0), then Pf = f. Hence, by Theorem 2.9, f = ry 0 with r! the 2ff-periodic
function (7,$ /($,$, and rf$ E L2(lRd) because of Lemma 2.13.
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Conversely, if r is defined on 'Itd, and T-' E L2(IRd), then the inverse transform f of T"' is also

in L 2(IRd) and satisfies T' = [r, ]/[$, $] = r on = supp[4, 4]. Since 0 vanishes off f/O + 2rZ d ,

this implies with Theorem 2.9 that

Ri = TIo = To = f.

Consequently, Pf = f and hence f E S(O'). Finally, if T is bounded, then T"' E L 2 (lRd) since

4'E L2 (IUd).

Remark 2.15. Asher Ben-Artzi has pointed out to us that Theorem 2.14 could have been
derived from general results (cf. Theorem 8 of [H;p.59]) concerning closed subspaces of L2 (1,£2)
which are invariant under multiplication by exponentials. Furthermore, the lemma of [H;p.58]

shows that Theorem 2.14 implies Theorem 2.9.

Remark. The representation r' for f E S(O) is in general not unique. If roO = T14, we can
only conclude that To = r' a.e. on f!l. However, if the shifts of 4' are an orthonormal basis or, more
generally, an L2(lRd)-stable basis, then, as is well known, [0, ] and its reciprocal are both in Lo
and not only is the representation unique but the function r is in L 2 (I rd). It is interesting to note
further that we have a unique representation even when the shifts of 4 are not an L2(lRd)-stable
basis provided f10 differs from "Itd only by a null-set.

The following consequence of Theorem 2.14 is of importance when comparing our results with
related results in the literature.

Theorem 2.16. f 14 E L2 (lRd) has compact support, then S(46) is the L 2(IRd)-closure of S 2(0') =
S,,(O) n L2(IRd).

Proof. Since S(O) is the L2(lRd)-closure of SO(O) and SO(4') is contained in S2(0) (since

4' E L2 (IRd)), we only have to prove that

(2.17) S2() C S(4).

We now prove this by showing that Pof = f for every f E S2(46), i.e., with (2.12), that

(2.18) t=

Since 4' has compact support, [ZO] is a trigonometric polynomial (cf. (1.12)), hence (2.18) is
equivalent to the equation

(2.19) [,$J= [f,]$ a.e.,

and it is this equation we now verify for any f in L2(IR d) of the form "OZ 4(" -0 1)c(#).
We do this by showing that both sides of (2.19) are the Fourier transform of the function

f(. + a)a(a4
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with a(a) - f 0 4('-a) the (Fourier) coefficients of the trigonometric polynomial [, ], see (1.12).
This is immediate for the left side of (2.19) since (E y f(. + a)a(a))" = (E, ,zi a(a)e,,)f for
any f E L2(JR ) and any finite sequence (a(a)), and [4,, 4] is indeed a finite sum of exponentials
since 4 is compactly supported. As to the right side of (2.19), [f, 4] is a 21-periodic L2-function

(since 4 is compactly supported, thus 4 is bounded), hence the L2(Trd)-limit of its Fourier series

E,2zd b(-y)e,, with b given by

by)JJ :=(2-/3)c(7..+ d)+y) +

By (2.7), [f,], is the L2 (1Rd)-limit of EYZd b(7)e1 , hence ([,,]4)v is the L2 (lRd)-llmit of

"I E2Z'd 0(. + 7 )b(7). Since this last sum also converges uniformly on compact sets, these two limits
must be the same. This implies that the right side of (2.19) is the Fourier transform of

E 4,(. + -y) E c(/3)a(7j + /3) = E Ej 40(. + ce - /3)c(#)a(a) = 1: f(. + a)a(a),
'ye2Z" aE7Ld3ETZd cEZ

J

with the rearrangement of the sums justified by the fact that all sums are finite. 4

We now turn to our main objective, viz. the error of the best approximation. If f is supported

in one the cubes /3 + C,/3 E 27r2 Zd, this error takes a very simple form:

Theorem 2.20. Let 4 E L2(lRd). Iff E L2(lRd) and supp fC /3 + C for some3 E 2r 7Z d, then

-d -) -d t  2~
(2.21) E(fS(4)) 2 - (27r) E(f ,S )) - (2) W)-d0 - I

Proof. Since supp fC C + /3 for some/3 E 2ir d we have [+,] - f(" +/3)4(-+/3) on C.
Therefore, with (2.6),

IIr,$ll2 =/ 1f('+ /3)121 (" + /3)12/[;, ] =/, I 111 /[$, ].

By Theorem 2.9, this shows that

(IP~f 112 -(2,), I212/[,,)f

and this finishes the proof since II/- P,f112 = II1I2 -11PoI1 2. 4

3. The reduction to the principal case

The explicit and simple expression, derived in the previous section, for the orthogonal pro-

jector onto a principal shift-invariant space will also prove to be very useful in the discussion of
approximation from a general shift-invariant space. For, remarkably, the approximation power of

a general shift-invariant space, however large, is already contained in a single (suitably chosen)

principal shift-invariant subspace of it. The next proposition provides the algebraic background for

this fact. We use repeatedly the simple observation that the best approximation Pf to f from S

is also the best approximation Ppjf to f from S(Pf), i.e.,

Ppf = Pf.

9



Proposition 3.1. Let P be the orthogonal projector onto the closed shift-invariant subspace S of

L2(lRd) and denote by P the corresponding orthogonal projector onto S. Then P(rf) = TP(f) for

any f E L 2(IRd) and any 2ir-periodic r for which rf E L2(lRd).

Proof. If S is principal, then the conclusion follows directly from (2.12). For the general

case, the assumptions on r and f imply with Theorem 2.14 that rf E S(). Since S(f) is, by
definition, the L2 (IRd)-closure of So(f), and So(f) = {rf: r,, a trig.polynomial}, it follows that rf

is the L 2(1Rd)limit of rJf for some sequence (r,) of trigonometric polynomials. The shift-invariance
of S and the uniqueness of the best L 2-approximation imply that P(f(. + 0)) = (Pf)(. + a) for every

f E L2(]Rd) and every a E Md. Hence, taking finite linear combinations of Fourier transforms,
P(rf) = rPf, and so, by the continuity of 1,

P(rf) = lim P(rnf) = lim .PfI.
n-.oo n-oo

Each -r,Pf is in the closed space S(Pf), therefore also P(rf) lies in S(Pf). Thus, projecting rf
onto & is the same as projecting it onto the subspace S(Pf) of S. Since we already know that

Po(rf) = rPof for any 4,f E L2 (IRd), this means that we obtain

P(rf) = Pp(rf) = rPp(f) rPf

the last equality since Ppff = Pf. 4

Corollary 3.2. If P is the orthogonal projector onto some shift-invariant subspace of L2(IRd) and

g E L 2(IRd), then

PP = PPgPg.

Proof. If f E L2(lld), then Pgf = rg for some 2ir-periodic r and therefore by Proposition

3.1, P(Pqf) = rg. On the other hand, Pp9 (Pgf) = P(rg) = TrPpg? = rPg. A

Theorem 3.3. For any closed shift-invariant subspace S of L 2(IRd) and any f,9 E L2(lRd),

(3.4) E(f,S) _< E(f,S(Pg)) < E(f,S) + 2E(f,S(g)),

with P = Ps the orthogonal projector onto S.

Proof. Only the second inequality needs proof. By Corollary 3.2,

f- Pp.gf = f- Ff + Pf - PPgf + PpgPgf - Ppgf,

and therefore

(3.5) I! - PPgfl < If - Pfll + 1if - Puf l + iP9! - Ill.

10



This theorem shows that the approximation order of the particular principal subspace $(Pg)
of , is the same as that of all of 8, provided that the approximation o -der of the principal space
S(g) is at least as good as that of S. This suggests the use of a special function g for which S(g*)
has arbitrarily high approximation order. We can take g* to be the inverse Fourier transform of
the characteristic function of the cube C = [-r . . 7r]d, i.e.,

g* := (xc)v.

We note that, by (2.12), Pf"f - [Jxc]I[xcx¢] xc - xci. Hence,

(3.6) E(fS(g)) = (27r)-d1211( 1 - XC)fI.

This allows us to show easily that the space S(g*) provides approximation and density order k for
all k> 0. For this, we follow the example of [BR2] and consider, equivalently, the approximation

of the scaled function

fh := f(h.)

from the fixed space S instead of the approximation of the function f from the scaled space Sh.

For,

(3.7) E(f,Sh) = hd/ 2 E(fh, S),

as is easily established by a change of variables.

Lemma 3.8. Let f E wk(Rd), k > 0, h > 0. Then
,(fS(g*)h) k cI(h)hkllf IIw&(d,,

with the (nonnegative) function e! defined by

f~n\c)h( I+ I" I)v'Iii
(3.9) (h )2  := fR d(1 + .I)2 kf1 2

fjnd( 1 + I. I)2kIfI2

hence cj(h) < 1, and cj(0+) = 0.

Proof: Since f E W2k(lRd), the function v := (1 + I. I)kf is in L 2(lRd), and 11f 11v"(Rd) =

(27r)d/2 1iI. Since A - h-df(./h), (3.7) and (3.6) imply that

(2ir)dE(f,S(g*)h) 2 - (2ir)dhdE(fh,S(g*)) 2  hdII(1 - XC) I12 = hd (y)2

27r Ef, =(27rh E~f = A hJ IRd\C A d

= h-d f If(y/h)12 dy = h2k-d /f Iv(y/h)12 dy
JfA\C AJIV\C (h + lyl)2k

< h2k-d J lv(ylh)12 dy = hIk  I12 = (2)dh2kE(h) 2 fI
JrJ \C (rd"\C)lh Whjd

4
We note for later reference the following useful result established during the proof of Lemma

3.8.

11



Corollary 3.10. For each f E 2~I~)

hd/ 2
11(1 _ XC)l-II (27r )d/ 2 ef(h)hkIlfI 11J)

with ef given by (3.9).

Now let S be an arbitrary closed shift-invariant subspace of L 2 (lRd) and let 0* : Pg* be the
best L2 (lRd )-approximation to g* from S. Using (3.7) and Lemma 3.8 in (3.4), we obtain

(3.11) E(f, Sh) :5 E(f, S(O*)h) :5 E(f, S) + 2cf (h)hkIlf11Wiw(1Rd),

with ef (h) given by (3.9). This means that S provides approximation order k > 0 or density order
k > 0 if and only if its principal shift-invariant subspace S(O*) does. More than that, since Ef (h)
does not depend on S, it proves the following:

Theorem 3.12. The sequence {Sh~h of closed shift-invariant subspaces of L 2 (lRd) provides ap-
proximation order k > 0 or density order k > 0 if and only if the corresponding sequence {S(kZ)}h
of principal shift-invariant subspaces (with OZ~ := Ps,,(g) and g* = X') does.

4. Approximation orders and density orders

In this section we give a complete characterization of approximation orders and density orders
from the sequence {Sh} h of shift-invariant spaces. In view of Theorem 3.12, we need only to consider
the special case when each 3 h is principal. For 4 E L 2 (lRd), we let AO E L,,(C) be defined as in
the introduction:

AO 1 - 1/2,on C.

In terms of this AO, (2.21) gives that

(4.1) E(f,S(O)) -(27r )d/ 2I1fA.01I if SUpp f C C.

For f E L2(IRd) with f not just supported in C, we estimate E(f,S(k)) =(2Tyr) 2Ef, SM)
with the aid of Corollary 3.10 and the simple observation that

JE(f, S) - F(xcf , S) :5 11(l - x)I 1

for an arbitrary subspace S of L2(lR d). Indeed, with the aid of (3.7), this estimate implies that

-Ef (h/21rjdIE(xCfh, &)I = IhdIE(fh, S) - (h/2r d/E(xcA, S) I

= (h/27r d/2 E(fhS) - E(Xcfh,S)1 : (h/27rd/1( -XC)fhII.

Therefore, Corollary 3.10 establishes

(4.2) IE(f,Sh (/l/27r /E(xcfh,9)I 5 cf(h)hkIf~kR)

12



Theorem 4.3. For {4h}h C L 2 (lRd), the sequence {S(qh)}h provides approximation order k if

and only if

{(h + 1. )k h

is bounded in Lo,(C).

Remark. Since each AOh is non-negative and bounded above by 1, and since each (h + I" 1)k is
bounded below by hk, it is clear that each A, is an element of L ,(C). So it is the uniform

boundedness of as h --+ 0 that characterizes the approximation order k.

Proof. In view of (4.2), {S(Oh)}h provides approximation order k if and only if there exists

some constant c such that for every f E Wk(lRd) and every h > 0

(4.4) hd/2 E(xCfh,S(h)) < chkIlfIIw,(Rd).

Since Xcfh is supported in C, we may appeal to (4.1) (i.e., to Theorem 2.20) to conclude that

hdE(xc'fh, '())2 = hd J IfhI2A h

(4.5) A A

For f E Wk(Rd), the function V := (1 + 1. )kf is in L2 (lRd), and Ilfl wnk(Rd) = (27r)-d/2121,1 . With
the aid of v, the last expression in (4.5) can be rewritten as

I lV12 Ao,(h)2

IC/h v1(1 + I I1)2k'

Further, when f varies over all of Wk(lRd), , varies over all of L2(IRd), i.e., g :1 2 varies over
all non-negative functions in L1 (Rd). This means that the k-approximation order requirement is

equivalent to the existence of c > 0 such that

(4.6) J IOIX (h .)2 < ch 2kllgllL,(R), Vh > 0, Vg E L,(IRd).

Fixing h, the last condition states that X h considered as a linear functional on L(,

is bounded by ch 2k. Consequently, having {S(Oh)}h provide approximation order k is equivalent
to the existence of c > 0 such that

11(1 + 1 J)k"'..cph < chk"

The proof is thus completed, since upon rescaling the last condition becomes

(4.7) I I  c.
(h + 1. 1)k C

13



4

Proof of Theorem 1.6. In the case of this theorem, Oh = 0 for all h > 0. Using this in
(4.7) and letting h --+ 0, we get that (4.7) is equivalent to I. 1-kAo E Lo(C). 4

Remark. Note that the cube C that appears in the characterization of approximation orders
is entirely incidental. Since, for every h, Ao, is bounded by 1, and also (h + I ) - k is bounded,

independently of h, in any complement of a neighborhood of the origin, the cube C can be replaced
by any neighborhood of the origin.

Another remark concerns the case k = 0 which will soon be considered in the context of density
orders. We have not discussed approximation order 0 simply because of lack of any mathematical
interest: the requirement in this case is vacuous. This is in agreement with Theorem 4.3, for the
boundedness of {( -)}h is also a vacuous condition, since each Aj,, is uniformly bounded by 1.
This means that the statement of Theorem 4.3 is valid also for k = 0.

With Theorem 4.3 in hand, we turn our attention to the characterization of density orders.
Our result concerning density orders is as follows.

Theorem 4.8. For {Ohkh C L 2(lRd), the sequence {S(Oh)}h provides density order k if and only
if

A1h{(h +I . )k i

is bounded in Loo(C), and

r A2  
_

(4.9) limhd h I -d0 -0 V >0.
h-0 ihaC (h +.I)2k

Proof. In view of Theorem 4.3 and the definition of density orders, the theorem here isA#

proved as soon as we show that, under the assumption that {(h+jijj)}h is bounded, the condition

(4.10) lim hd/ 2-E(fh, S(Oh))- 0, Vf E Wk(IRd)
h--0

is equivalent to (4.9). For this we can follow the proof of Theorem 4.3 up to (4.6) to conclude that
(4.10) is equivalent to the condition that

(- Xc/h(j+ .-1 k - 0, Vg E Ll(]Rd).

Choosing g := X.C in (4.11) and rescaling, we obtain (4.9), so that the necessity of (4.9) for
k-density order is proved.

To prove the sufficiency, we define

-hh2kx A.~jh.)2  hh=1 h >0o

14



We view the Ah as elements of LI(IRd). We want to show that (4.11) holds, namely that {Ah}h

converges weak-* to 0. We know that {Ah}h are positive, uniformly bounded, and by (4.9),

Ah(Xac) --- 0 for every a > 0. This latter condition implies that Ah(XK) --- 0 for any com-

pact K. By linearity, Ah(g) tends to 0 for each compactly supported simple function g. Since such

functions are dense in LI(IRd), we obtain (4.11). 4

Proof of Theorem 1.7. Since (h + I I)-2k < 1.1-2k, (1.8) implies that

A2

lim h d of, _
h--O Ic (h+ I. 1)2k =0

which is the case a = 1 in (4.9), and implies the rest of (4.9), since here 4h = 0 for all h, hence A0

does not change with h. Thus, Theorem 4.8 implies the sufficiency of (1.8).

On the other hand, if 8(0) provides density order k, then (4.9) holds (with Ao, = A0, all h).

Since ly- 2k < c(h + jy) - 2k for y E hC \ (hC/2) and some absolute constant c, we obtain from

(4.9) (with a = 1)

(4.12) / < C(h)h

where limb--.0 c(h) = 0. Summing these estimates gives

(4.13) A(y) E(2-j dhd < 2 max e(u) hd.

(c 4y2 3 j >_o O<u

Since the right side of (4.13) is o(hd), we obtain the necessity of (1.8). 4

Combining the two last theorems with Theorem 3.12, we obtain

Theorem 4.14. Let {Sh} be a sequence of shift-invariant spaces. For each h, let Oh be the best

approximation from Sh to g* = X'. Then, {Sh}h provides approximation order k if and only if

((h +-1 -IlYk

is bounded in Loo(C), and {S}h are kth-order dense if and only if, in addition to the above,

(4.15) lim h- d j A - =0, Va>0.
A-0 1hac (h + 11"1)2k

Proof of Theorem 1.9. This follows from Theorem 1.6, Theorem 1.7, and the reduction to

the principal shift-invariant case given by Theorem 3.12 (with 4'; = 0* = Psg* for all h). 4

5. The Strang-Fix conditions

As mentioned in the introduction, approximation orders from the scaled spaces {Sh }h were

characterized in [SFJ under the assumptions that (a) the space Sh is obtained as the h-dilate of

the same principal shift-invariant space S(0); (b) the generator 4' of S(-0) is compactly supported;

and (c) the approximation order is realized in a controlled manner. The controlled approximation

assumption, in turn, forces the condition $(0) # 0.
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In order to compare these conditions to the characterization of approximation orders for prin-
cipal shift-invariant spaces that we obtain in the present paper, we assume in this section that we
have in hand a sequence {S('kh)h of principal shift-invariant spaces which satisfy one or both of
the following conditions, in which fl is some neighborhood of the origin, and q} and U are positive
constants:

(5.1) 3 fl, p,ho s.t. l4h(X)l p a.e. on fl, V 0 < h < ho;

(5.2) 3 f, 71, h0  s.t. 17 5 I4h(x)I a.e. on fl, V 0 < h < ho.

Note that, in case Oh does not change with h (i.e., when assumption (a) above holds), and 0 is
continuous at the origin (e.g., .0 is compactly supported, as in assumption (b) above), (5.1) is
satisfied automatically and (5.2) is reduced to the mere condition

(5.3) 0(0) 6 0.

We recall (see the remark after the proof of Theorem 1.6) that the uniform boundedness required
in Theorem 4.3 for k-approximation order can be checked in any neighborhood fl of the origin,
hence we can replace the cube C in the theorem by fl. As the next results show, A0h can often be
replaced by
(5.4) Mh := ( F Ih( + ,)12)1/2 - ([1h,$h] -15,,2)',2.

PE21rZJ\O

Lemma 5.5. If(5.1) holds and the sequence {S(h)}h provides approximation order k, then

(5.6) M(h +") < h

is bounded in Lo,(W) for some 0-neighborhood R1' and some h' > 0. On the other hand, if (5.2)
holds and (5.6) is bounded in Lo(W) for some 0-neighborhood 11 and some h', then {S(0h)}h

provides approximation order k.

Proof. If {S(Qh)}h provides approximation order k, then, by Theorem 4.3,

{(h + I . I)-kA#,}h is bounded, say by c, on f. This, together with (5.1), implies that
(5.7) (h ±- I )-2 kM2 < c(M2 + 1 h&2) _< c(M2 + 12 ),

and therefore, ( +I. I)- 2k _ C)M2 < Cjj2.

Thus, for sufficiently small h and some neighborhood 11' C fl of the origin, the leftmost term in
(5.7) does not exceed 2cp 2.

Conversely, (5.2) implies that, on R,

A2= 1- I & 2 < _M2

M2 + 1- 12 - 1- 12-

Therefore, by Theorem 4.3, the boundedness of (5.6) implies that {S(0h))h provides approximation
order k. 4

We now consider in more detail necessary conditions for approximation order which follow
from our characterization of approximation order. Since 10h(" + #)1 5 Mh for all / E 21r2"d\O, the
next theorem is a direct consequence of the last lemma:
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Theorem 5.8. If(5.1) holds and {S(Oh)}h provides approximation order k, then, for all 0 < h < h0

and for all/3 E 2 r2d\0, and in some 0-neighborhood,

10h(" + /3)1 <c(h + I 'I)k ,

for some c independent of/3 and h.

In case 4 does not change with h, we may let h - 0 in the last display and so obtain Theorem

1.14. This shows that the necessity of the Strang-Fix conditions (1.11) for k-approximation order
holds in a very general setting. This is remarkable, since this implication is considered to be the

"harder" one. An analogous Lo-result has been obtained in [BR2] by other means.

We now consider in more detail sufficient conditions for approximation order. There is no

reason to believe that (upon assuming (5.2)) the assumptions

(5.9) D- = 0 on 2rZZd\0 for all I-tJ < k

would suffice for approximation order k since from Lemma 5.5 we only can deduce the following:

Corollary 5.10. If 0 < 17 a.e. on some neighborhood f of the origin, and if

(5.11)" I <cl.l2k , a.e. onfl,
0621rZ11\0

then S(-0) provides approximation order k.

However, assumptions like (5.9) can only imply that, for each individual / E 2r2Z d\0,

I(+ #)12 < C . 12k,

hence will not in general yield (5.11). On the other hand, there are several results in the literature
which show that, under additional assumptions on 0, (5.9) does imply that S(O,) provides approx-

imation order k. For example, standard polynomial reproduction/quasi-interpolation arguments

show that if

(5.12) 10,{)l = O(Iz-kdt), as z --+ oo,

and if 0(0) 0 0, then (5.9) implies that S(0) provides approximation order k (cf. e.g., Proposition
1.1 and Corollary 1.2 in [DJLR]). Unfortunately, the decay conditions (5.12) fail to hold for many

functions 4 of interest (primarily radial basis functions, and usually because 0 is not smooth

enough at 0), and in such a case, the polynomial reproduction argument either fails, or is not easily

converted into approximation orders. Circumventing the polynomial reproduction argument was
actually the major objective of [BR2]. In our context, Theorem 1.6 leads to a remarkable result,

which allows (5.12) to be replaced by a much weaker condition, and which we now describe.
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For this result, we need a local version Wf(fl) of the potential spaces W2,(lRd). If p is an
integer, then this space is simply the Sobolev space of all functions whose (weak) derivatives up
to order p (inclusive) are in L2(f). In this case, if {flo}pE, is a disjoint collection of open subsets
of IR , we have " t IflfwII2(n ) = IIfIlw (unO,)" As is well-known, there are several equivalent

extensions of the definition of Wf(ft) to the case of a fractional p (see, e.g., [A; ch.7]). For fractional
p, we have the following subadditivity property:

(5.13) X IlfIII ( ) < Cllf 112 UE il),
W2 361600

whenever, say, {fl#},o is a disjoint collection of cubes; (cf. [A; p.225]). Our result is as follows:

Theorem 5.14. Assume that 0 < qI _ a.e. on some cube Qi centered at the origin. Let A
U0E2 ,7Z7 \0(S1 + #). 1 $ E W2'(A) for some p > k + d/2, and if (5.9) holds, then S(O) provides
approximation order k.

The virtue of this theorem is that we can take !t to be so small that A does not contain
the origin. This is important since in many cases of interest is smooth on IR \0 but has some
singularity at the origin (this happens, e.g., when 0 is obtained by the application of a difference
operator to a fundamental solution of an elliptic equation). But, if 4 satisfies (5.12), then 4 is
globally smooth, since we obtain from (5.12) that 4 E W2,(Rd) for p = k + d/2 + e/2 as well as
4 E Ck(IRd). Thus, Theorem 5.14 and Theorem 1.14 together imply the following result.

Corollary 5.15. If 4) satisfies (5.12) and 4(O) $ 0, then S(O) provides approximation order k if
and only if (5.9) holds.

Proof of Theorem 5.14. It follows from(5.9) that, for every 3 E 27rZZd\0, and with fl, := fn + 3,

(5.16) 1 (X + M)I <cIxlk max IID$IIL.,sn ), forx E fQ.- I-yl=k

Since p > k + d/2, the Sobolev embedding theorem (cf. [A; p.217]) implies that Wf'(fla) is contin-
uously embedded in the Sobolev space Wk(il#). Thus,

O I-y~maxk IID 4,IIL.(0p 5 C11fl4'IRWn,

with cl independent of P (since all the ftp are translates of each other). Substituting this into (5.16)
we obtain that

I0(X + ) < 21X IIlIIV1w;(o), X E fQ,# E 27r2

Squaring the last inequality and summing over /3 E 2 1rz7 d\o, we obtain, in view of (5.13), that
I-X+ # <2 1kI1
0( 5~r+131 C31XI1IW2P(A).

P12r~d\O

Lemma 5.5 now supplies the conclusion that 8(0,) provides approximation order k. 4
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In applications, it might be convenient to take p to be the least integer that satisfies p > k+d/2.
For this case, Theorem 5.14 reduces to Theorem 1.15.
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